B8 @

%

NUS

National University
of Singapore

Codeflaws: A Programming Competition
Benchmark for Evaluating Automated Program Repair Tools

Shin Hwei Tan*, Jooyong Yi#, Yulis*, Sergey Mechtaev*, Abhik Roychoudhury*

*National University of Singapore, *Innopolis University

Abstract

Several automated program repair techniques have been proposed to reduce the time and effort spent in bug-fixing. While these repair tools are designed to be
generic such that they could address many software faults, different repair tools may fix certain types of faults more effectively than other tools. Therefore, it is

important to compare more objectively the effectiveness of different repair tools on various fault types. However, existing benchmarks on automated program repairs
do not allow thorough investigation of the relationship between fault types and the effectiveness of repair tools. We present Codeflaws, a set of 3902 defects from
7436 programs automatically classified across 39 defect classes (we refer to different types of fault as defect classes derived from the syntactic differences between
a buggy program and a patched program).

Codeflaws

« 3092 defects extracted fror' 11 Cob

EFORCES"

Sponsored by Telegram

e Allows extensive investigation of repairable defect classes

e Contains scripts for running 4 state-of-the-art automated repair tools

> GenProg, SPR, Prophet, Angelix

Our defect classes and example of each defect class

Control flow

SRIF) Replace if, else, else if, for or while

AST Type|Defect Type |Defect Class Example
Statement (SDIF') Delete if, else, else if, for or while - if (lines[i].y1 == last->y1)
SIIF) Insert if, else, else if, for or while 4+ if(7)
- if(a==Db)

+ if{mask(a)==Db)

SIRT) Insert return

+ return 0;

SDIB) Delete/Insert break or continue - break;
Data flow - answer—+=/((i-1)*dif);
SISA) Insert assignment + t=0;

Function call

SDFN) Delete function call

- printf{ “%s %s\n",s1,s2);

SISF) Insert function call

+ scanf(“%d”, &n);

(
(
E
(SDLA) Delete assignment,
(
(
(
(

. . - int a;
Type STYP) Replace variable declaration type Tonga:
- scanf(“%d" ,&1);
Move (SMOV) Move statement scanf(“%s", &a);

+ scanf(“%d” ,&i);

-

(SMVRB) Move brace up/down printf(“%d" c);
+ }
Operator |[Control flow [(ORRN) Replace relational operator i ?f(sum>11)
+ if(sum™>=n)
) - if((s]i] =="4") && (s[i] == "7"))
(OLLN) Replace logical operator L if((s[i] == "4%) || (s[i] == 7))
- if(t%2==0)

(OILN) Tighten condition or loosen condition

b iF(L%2==0 && t1=2)

(OEDE) Replace = with == or vice versa

- else if(n=1 && k==1)
+ else if(n==1 && k==1)

(OICD) Insert a conditional operator

- printf (“%d\n”, i);

+ printf (“%d\n", 3 ==x7 5:1);

Arithmetic

OAAN) Replace arithmetic operator

- v2-=d;
+ v2+=d;

OAIS) Insert/Delete arithmetic operator

- max += days%2;
+ max += (days%7)%2;

OAID) Insert/Delete/Replace ++ or ——

+ 1+

Fain T P B N B

OMOP) Modify operator precedence

- ans=max(ans,l-arr[n|*2};
+ ans=max(ans,(l-arr[n])*2);

Function call

(OFFN) Alternative function call

- fHush(stdin);
+ getchar();

(OFPF) Replace print format

C printf{ “%d\n",1);
4+ printf{ “%lld\n" 1);

(OFPO) Modify function parameter order

- if(stremp(c[i],b)>0)
4+ if(stremp(b,cli])=>0)

- printf{ “%d”,&t);

Pointer (OIRO) Insert/Delete Reference Operator . printf{<%d” t):
- ((p2m/plm)*t+1
Type (OITC) Insert type cast operator ¢ [(foat)pdmfplm) E-L1s
; ; - for(i=n+1;i<=9000;i++)
OperanD [Constant (DCCR) Replace constant with variable/constant . for(i=n-+1;i<—=10000;i++)
: : ; : - for (i=0;i<;i++)
Variable (DRVA) Replace a read variable with a variable/constant ; tor Tl zem k]
(DRWYV) Replace a write variable with a variable - Z:((]];
+ a=0;
- out[l] = "\0’;
Array (DMAA) Tnsert/Replace array access out[l——] = \O*;
o s mw urs - int ex[2]={0,2};
(DRAC) Replace constant of array initialization , int ex[2]={0,3):
. . - int x[100]
(DCCA) Modify array size . int x[100000];
Higher Non-branch [(HDMS) Delete multiple non-branch statements = freapent cmput.t}{t 5 l:(’,,Stdm);
order - freopen(“output.txt”, “w”, stdout);

(HIMS) Insert multiple non-branch statements

({
+ freopen(“input.txt”, “r", stdin);
({

+ freopen(“output.txt™, “w”, stdout);

(HDIM) Delete and insert multiple non-branch statements

- break;
4+ count=0;

Branch stmt

(HBRN) Delete/Insert branch and non-branch statements

4+ if(len%slov!=0){ printf(“NO" };

+ return 0;}

Expressions

(HEXP) Delete/Insert/Replace operators & operands

- if(m*9>=s && s)
+ If((M*9>=s && Is) || (m==1))

Combination

(HCOM) Insert/Replace statements and expressions

- rop]
+ for(i=n-1;i>=0;i——)

Others

What kind of
programming mistakes

(HOTH) Other higher order defect classes

Buggy Program

123: if(sum>n)
have | made? l
Automated Program Repair
Generate Hint
Ask for Hint '! !

- scanf(“%s",h);
+ for(i=0;i<71;i4++)
+ scanf(“%c” & h[i]);

Our Criteria for Automated Program Repair Benchmark

The Basic Statistics of Subject Programs in Codeflaws

Measurement Total/Range Average

of Programming Contest 548 -
of Programming Problems 1284 -
of Programs 7436 -
of Defects 3902 -
Size of Repair Test Suite 2-8 3
Size of Held-out Test Suite 5-350 40
Source Lines of Codes 1-322 36

v C1: Diverse types of real defects.
v’ C2: Large number of defects.

v’ C3: Large number of programs.
v’ Ca:

v C5:

o Defect class classification based on the syntactic differences
between the buggy program and the patched program.

1) Allows automatic classification of defect classes

2) Enables extensive evaluation of different repair tools

> Distribution of defect classes

Frequency

\)

Repair)| , if(sum>n)

if(sum>=n)

Hint: Wrong Relational
Operator at line 123

Programs that are algorithmically complex
| arge held-out test suite for patch correctness verification

3) Commonly deployed in the literature

e Our Codeflaws benchmark aim to facilitate future empirical study in
automated program repair.

e A step towards the evaluation of program repair tools against
multiple dimensions with defect classes being one such dimension.

e Publicly available for download at: https://codeflaws.github.io/

